Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Chem Biol ; 5(4): 293-311, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38576726

RESUMEN

l-Cysteine is a highly reactive amino acid that is modified into a variety of chemical structures, including cysteine sulfinic acid in human metabolic pathways, and sulfur-containing scaffolds of amino acids, alkaloids, and peptides in natural product biosynthesis. Among the modification enzymes responsible for these cysteine-derived compounds, metalloenzymes constitute an important family of enzymes that catalyze a wide variety of reactions. Therefore, understanding their reaction mechanisms is important for the biosynthetic production of cysteine-derived natural products. This review mainly summarizes recent mechanistic investigations of metalloenzymes, with a particular focus on recently discovered mononuclear non-heme iron (NHI) enzymes, dinuclear NHI enzymes, and radical-SAM enzymes involved in unusual cysteine modifications in natural product biosynthesis.

2.
Angew Chem Int Ed Engl ; : e202403963, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635317

RESUMEN

(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae  catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1, in different manners from well-known tryptophan dioxygenases. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.

3.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38654452

RESUMEN

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus oryzae/enzimología , Aspergillus oryzae/metabolismo , Familia de Multigenes , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
4.
Beilstein J Org Chem ; 20: 578-588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505236

RESUMEN

Meroterpenoids are hybrid compounds that are partially derived from terpenoids. This group of natural products displays large structural diversity, and many members exhibit beneficial biological activities. This mini-review highlights recent advances in the engineered biosynthesis of meroterpenoid compounds with C15 and C20 terpenoid moieties, with the reconstruction of fungal meroterpenoid biosynthetic pathways in heterologous expression hosts and the mutagenesis of key enzymes, including terpene cyclases and α-ketoglutarate (αKG)-dependent dioxygenases, that contribute to the structural diversity. Notable progress in genome sequencing has led to the discovery of many novel genes encoding these enzymes, while continued efforts in X-ray crystallographic analyses of these enzymes and the invention of AlphaFold2 have facilitated access to their structures. Structure-based mutagenesis combined with applications of unnatural substrates has further diversified the catalytic repertoire of these enzymes. The information in this review provides useful knowledge for the design of biosynthetic machineries to produce a variety of bioactive meroterpenoids.

5.
Org Lett ; 26(3): 724-727, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38227980

RESUMEN

l-Isovaline biosynthesis by TqaLFM-ti from Tolypocladium inflatum was demonstrated in vitro. The biochemical analysis of the α-ketoglutarate-dependent oxygenase TqaL-ti revealed that it produces (2S,3S)-3-ethyl-3-methylaziridine-2-carboxylic acid from l-isoleucine, thus exhibiting a stereoselectivity different from those of the reported homologues. Remarkably, a single mutation on I295 in TqaL-ti completely exchanged its stereoselectivity to produce the C-3 stereoisomer. TqaFM-ti generates d-isovaline from (2S,3R)-aziridine-2-carboxylic acid, suggesting that the stereochemistry of the TqaL product defines that of isovaline.


Asunto(s)
Aziridinas , Ácidos Cetoglutáricos , Oxigenasas , Valina/análisis , Estereoisomerismo
6.
ACS Catal ; 13(20): 13369-13382, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38130475

RESUMEN

The pseudoglycosyltransferase (PsGT) enzyme VldE is a homologue of the retaining glycosyltransferase (GT) trehalose 6-phosphate synthase (OtsA) that catalyzes a coupling reaction between two pseudo-sugar units, GDP-valienol and validamine 7-phosphate, to give a product with α,α-N-pseudo-glycosidic linkage. Despite its biological importance and unique catalytic function, the molecular bases for its substrate specificity and reaction mechanism are still obscure. Here, we report a comparative mechanistic study of VldE and OtsA using various engineered chimeric proteins and point mutants of the enzymes, X-ray crystallography, docking studies, and kinetic isotope effects. We found that the distinct substrate specificities between VldE and OtsA are most likely due to topological differences within the hot spot amino acid regions of their N-terminal domains. We also found that the Asp158 and His182 residues, which are in the active site, play a significant role in the PsGT function of VldE. They do not seem to be directly involved in the catalysis but may be important for substrate recognition or contribute to the overall architecture of the active site pocket. Moreover, results of the kinetic isotope effect experiments suggest that VldE catalyzes a C-N bond formation between GDP-valienol and validamine 7-phosphate via an SNi-like mechanism. The study provides new insights into the substrate specificity and catalytic mechanism of a member of the growing family of PsGT enzymes, which may be used as a basis for developing new PsGTs from GTs.

7.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220037, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633279

RESUMEN

Fungal meroterpenoids are important bioactive natural products. Their biosynthetic machineries are highly diverse, and reconstitutions lead to the production of unnatural meroterpenoids. In this study, heterologous gene expression in Aspergillus oryzae and in vitro assays elucidated the biosynthetic pathway of the orthoester-containing fungal meroterpenoid austalide F. Remarkably, the α-ketoglutarate-dependent oxygenase AstB produces the hemiacetal intermediate, and the methyltransferase AstL transfers a methyl group on it to construct the orthoester functionality. This study presents the extraordinary orthoester biosynthetic machinery and provides valuable insights into the creation of unnatural novel bioactive meroterpenoids through engineered biosynthesis. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
Aspergillus oryzae , Vías Biosintéticas , Terpenos , Terpenos/metabolismo , Aspergillus oryzae/metabolismo , Genes Fúngicos , Regulación Fúngica de la Expresión Génica
8.
J Am Chem Soc ; 145(3): 1886-1896, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36634356

RESUMEN

The logical and effective discovery of macrolactams, structurally unique natural molecules with diverse biological activities, has been limited by a lack of targeted search methods. Herein, a targeted discovery method for natural macrolactams was devised by coupling genomic signature-based PCR screening of a bacterial DNA library with spectroscopic signature-based early identification of macrolactams. DNA library screening facilitated the efficient selection of 43 potential macrolactam-producing strains (3.6% of 1,188 strains screened). The PCR amplicons of the amine-deprotecting enzyme-coding genes were analyzed to predict the macrolactam type (α-methyl, α-alkyl, or ß-methyl) produced by the hit strains. 1H-15N HSQC-TOCSY NMR analysis of 15N-labeled culture extracts enabled macrolactam detection and structural type assignment without any purification steps. This method identified a high-titer Micromonospora strain producing salinilactam (1), a previously reported α-methyl macrolactam, and two Streptomyces strains producing new α-alkyl and ß-methyl macrolactams. Subsequent purification and spectroscopic analysis led to the structural revision of 1 and the discovery of muanlactam (2), an α-alkyl macrolactam with diene amide and tetraene chromophores, and concolactam (3), a ß-methyl macrolactam with a [16,6,6]-tricyclic skeleton. Detailed genomic analysis of the strains producing 1-3 identified putative biosynthetic gene clusters and pathways. Compound 2 displayed significant cytotoxicity against various cancer cell lines (IC50 = 1.58 µM against HCT116), whereas 3 showed inhibitory activity against Staphylococcus aureus sortase A. This genomic and spectroscopic signature-based method provides an efficient search strategy for new natural macrolactams and will be generally applicable for the discovery of nitrogen-bearing natural products.


Asunto(s)
Streptomyces , Estructura Molecular , Lactamas Macrocíclicas/farmacología , Lactamas Macrocíclicas/química , Streptomyces/metabolismo , Genómica , Reacción en Cadena de la Polimerasa , Familia de Multigenes
9.
Nat Prod Rep ; 40(1): 46-61, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35642933

RESUMEN

Non-heme iron- and α-ketoglutarate-dependent oxygenases (αKG OXs) are key enzymes that play a major role in diversifying the structure of fungal meroterpenoids. They activate a specific C-H bond of the substrate to first generate radical species, which is usually followed by oxygen rebound to produce cannonical hydroxylated products. However, in some cases remarkable chemistry induces dramatic structural changes in the molecular scaffolds, depending on the stereoelectronic characters of the substrate/intermediates and the resulting conformational changes/movements of the active site of the enzyme. Their molecular bases have been extensively investigated by crystallographic structural analyses and structure-based mutagenesis, which revealed intimate structural details of the enzyme reactions. This information facilitates the manipulation of the enzyme reactions to create unnatural, novel molecules for drug discovery. This review summarizes recent progress in the structure-based engineering of αKG OX enzymes, involved in the biosynthesis of polyketide-derived fungal meroterpenoids. The literature published from 2016 through February 2022 is reviewed.


Asunto(s)
Ácidos Cetoglutáricos , Oxigenasas , Oxigenasas/metabolismo , Dominio Catalítico
10.
J Am Chem Soc ; 144(47): 21512-21520, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36395461

RESUMEN

Non-heme iron enzymes are versatile catalysts in the biosynthesis of medicinal natural products and have attracted increasing attention as practical catalytic tools in chemical synthesis due to their ability to perform chemically challenging transformations. The Fe(II)/α-ketoglutarate-dependent oxygenase TqaL catalyzes unusual aziridine formation from l-Val via cleavage of the unactivated Cß-H bond. However, the mechanistic details as well as the synthetic potential of TqaL-catalyzed ring closure remain unclear. Herein, we show that the TqaL-catalyzed aziridination of l-Val proceeds with an atypical, mixed stereochemical course involving both the retention and inversion of the C3(Cß) stereocenter. It is also demonstrated that TqaL accepts l-Ile and l-allo-Ile to generate the same diastereomeric pairs of aziridine products via an enzyme-controlled, stereoconvergent process. Our mutagenesis studies reveal that the reaction type (aziridination versus hydroxylation) and the stereochemical outcome are regulated by Ile343 and Phe345. Proper substitutions of Ile343 or Phe345 also make TqaL highly active toward the oxidation of α-amino acid substrates. This work provides mechanistic insights into the stereoselectivity and substrate specificity of the TqaL reactions.


Asunto(s)
Aziridinas , Ácidos Cetoglutáricos , Oxigenasas , Especificidad por Sustrato , Compuestos Ferrosos
11.
Org Lett ; 24(47): 8627-8632, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36394522

RESUMEN

Cordycicadins A-D (1-4) are four novel polyketides that were isolated from the liquid fermentation of the insect-pathogenic fungus Cordyceps cicadae JXCH1. The structures were determined by a combination of spectroscopic analysis, single-crystal X-ray diffraction, and computational methods. Compounds 1, 3, and 4 harbor an unusual exocyclic enol ether bridge that connects the separated ring systems. Hypothetical biosynthetic pathways for 1-4 were proposed. Cordycicadins A (1) and B (2) showed antifeedant activity against silkworm larvae (Bombyx mori) with EC50 values of 65.4 and 57.0 µg/cm2, respectively.


Asunto(s)
Bombyx , Cordyceps , Policétidos , Animales , Policétidos/farmacología , Cristalografía por Rayos X
12.
JACS Au ; 2(9): 1950-1963, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36186570

RESUMEN

Enzymes involved in secondary metabolite biosynthetic pathways have typically evolutionarily diverged from their counterparts functioning in primary metabolism. They often catalyze diverse and complex chemical transformations and are thus a treasure trove for the discovery of unique enzyme-mediated chemistries. Besides major natural product classes, such as terpenoids, polyketides, and ribosomally or nonribosomally synthesized peptides, biosynthetic investigations of noncanonical natural product biosynthetic pathways often reveal functionally distinct enzyme chemistries. In this Perspective, we aim to highlight challenges and opportunities of biosynthetic investigations on noncanonical natural product pathways that utilize primary metabolites as building blocks, otherwise generally considered as enzyme cofactors. A focus is made on the discovered chemical and enzymological novelties.

13.
Methods Mol Biol ; 2489: 223-238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35524053

RESUMEN

Assembly line enzymes, including polyketide synthases and nonribosomal peptide synthetases, play central roles in the construction of complex natural products. Due to the sequential biochemistry processed in each domain, the domain architecture of the assembly line enzymes strictly correlates with the product molecule. This colinearity makes assembly line enzymes an ideal target for rational reprogramming. Although many of the past engineering attempts suffered from decreased product yield, recent advancements in the bioinformatic analysis and engineering design now provide new opportunity to work on these modular megaenzymes. This chapter describes the methods for analyzing and engineering the assembly line enzymes, including module and domain analysis needed for designing the engineering of assembly line biosynthesis, and the expression vector construction with an example of two-vector heterologous expression system in Streptomyces.


Asunto(s)
Streptomyces , Péptido Sintasas/química , Sintasas Poliquetidas/genética , Streptomyces/metabolismo
14.
Yakugaku Zasshi ; 142(4): 347-353, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-35370191

RESUMEN

Natural products are an important source of medicinal seeds. The discovery of novel biosynthetic enzymes from nature is important for their use as biocatalysts for the enzymatic synthesis of useful natural products. In this review, I describe our recent research on the exploitation of a novel secondary metabolite enzyme and the production of unnatural bioactive products in the microbial host, as presented in the S02 symposium in the 141st annual meeting in the Pharmaceutical Society of Japan.


Asunto(s)
Productos Biológicos , Productos Biológicos/metabolismo , Japón
15.
Org Lett ; 24(13): 2526-2530, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35343710

RESUMEN

The biosynthetic gene cluster of atlantinone B (10) was discovered in Penicillium chrysogenum MT-40. A multifunctional cytochrome P450 (AtlD) encoded by the cluster is responsible for the formation of the unique lactone-bridged ring and the 16ß-hydroxyl of atlantinone B, and a new terpene cyclase (AtlC) can unprecedentedly accept the demethylated substrate epoxyfarnesyl-DMOA (4a) to generate three bicyclic meroterpenoids (5a-5c). This study paves the way for combinatorial synthesis of structurally diverse meroterpenoids for drug discovery.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Liasas de Fósforo-Oxígeno/metabolismo , Terpenos , Sistema Enzimático del Citocromo P-450/metabolismo , Familia de Multigenes , Metabolismo Secundario
16.
J Am Chem Soc ; 143(50): 21425-21432, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881885

RESUMEN

Talaromyolides (1-6) are a group of unusual 6/6/6/6/6/6 hexacyclic meroterpenoids with (3R)-6-hydroxymellein and 4,5-seco-drimane substructures, isolated from the marine fungus Talaromyces purpureogenus. We have identified the biosynthetic gene cluster tlxA-J by heterologous expression in Aspergillus, in vitro enzyme assays, and CRISPR-Cas9-based gene inactivation. Remarkably, the heterodimer of non-heme iron (NHI) enzymes, TlxJ-TlxI, catalyzes three steps of oxidation including a key reaction, hydroxylation at C-5 and C-9 of 12, the intermediate with 3-ketohydroxydrimane scaffold, to facilitate a retro-aldol reaction, leading to the construction of the 4,5-secodrimane skeleton and characteristic ketal scaffold of 1-6. The products of TlxJ-TlxI, 1 and 4, were further hydroxylated at C-4'ß by another NHI heterodimer, TlxA-TlxC, and acetylated by TlxB to yield the final products, 3 and 6. The X-ray structural analysis coupled with site-directed mutagenesis provided insights into the heterodimer TlxJ-TlxI formation and its catalysis. This is the first report to show that two NHI proteins form a heterodimer for catalysis and utilizes a novel methodology to create functional oxygenase structures in secondary metabolite biosynthesis.


Asunto(s)
Hongos/genética , Proteínas de Hierro no Heme/metabolismo , Terpenos/metabolismo , Aspergillus/química , Aspergillus/metabolismo , Biocatálisis , Dimerización , Hongos/enzimología , Hidroxilación , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Oxidación-Reducción , Terpenos/química
17.
Nature ; 600(7890): 754-758, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34880494

RESUMEN

ABSTRATCT: ß-Nicotinamide adenine dinucleotide (ß-NAD) is a pivotal metabolite for all living organisms and functions as a diffusible electron acceptor and carrier in the catabolic arms of metabolism1,2. Furthermore, ß-NAD is involved in diverse epigenetic, immunological and stress-associated processes, where it is known to be sacrificially utilized as an ADP-ribosyl donor for protein and DNA modifications, or the generation of cell-signalling molecules3,4. Here we report the function of ß-NAD in secondary metabolite biosynthetic pathways, in which the nicotinamide dinucleotide framework is heavily decorated and serves as a building block for the assembly of a novel class of natural products. The gatekeeping enzyme of the discovered pathway (SbzP) catalyses a pyridoxal phosphate-dependent [3+2]-annulation reaction between ß-NAD and S-adenosylmethionine, generating a 6-azatetrahydroindane scaffold. Members of this novel family of ß-NAD-tailoring enzymes are widely distributed in the bacterial kingdom and are encoded in diverse biosynthetic gene clusters. The findings of this work set the stage for the discovery and exploitation of ß-NAD-derived natural products.


Asunto(s)
Productos Biológicos , NAD , Catálisis , NAD/metabolismo , Niacinamida , Transducción de Señal
18.
Nat Commun ; 12(1): 6294, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728636

RESUMEN

C-Glycosides, in which a sugar moiety is linked via a carbon-carbon (C-C) bond to a non-sugar moiety (aglycone), are found in our food and medicine. The C-C bond is cleaved by intestinal microbes and the resulting aglycones exert various bioactivities. Although the enzymes responsible for the reactions have been identified, their catalytic mechanisms and the generality of the reactions in nature remain to be explored. Here, we present the identification and structural basis for the activation of xenobiotic C-glycosides by heterocomplex C-deglycosylation enzymes from intestinal and soil bacteria. They are found to be metal-dependent enzymes exhibiting broad substrate specificity toward C-glycosides. X-ray crystallographic and cryo-electron microscopic analyses, as well as structure-based mutagenesis, reveal the structural details of these enzymes and the detailed catalytic mechanisms of their remarkable C-C bond cleavage reactions. Furthermore, bioinformatic and biochemical analyses suggest that the C-deglycosylation enzymes are widely distributed in the gut, soil, and marine bacteria.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Tracto Gastrointestinal/metabolismo , Glicósidos/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Cristalografía por Rayos X , Tracto Gastrointestinal/microbiología , Glicósidos/química , Glicosilación , Filogenia , Elementos Estructurales de las Proteínas , Homología de Secuencia , Especificidad por Sustrato
19.
J Fungi (Basel) ; 7(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208768

RESUMEN

The heterologous gene expression system with Aspergillus oryzae as the host is an effective method to investigate fungal secondary metabolite biosynthetic pathways for reconstruction to produce un-natural molecules due to its high productivity and genetic tractability. In this review, we focus on biosynthetic studies of fungal polyketide-derived meroterpenoids, a group of bioactive natural products, by means of the A. oryzae heterologous expression system. The heterologous expression methods and the biosynthetic reactions are described in detail for future prospects to create un-natural molecules via biosynthetic re-design.

20.
Acta Pharm Sin B ; 11(6): 1676-1685, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34221876

RESUMEN

Fusidane-type antibiotics, represented by helvolic acid, fusidic acid and cephalosporin P1, are fungi-derived antimicrobials with little cross-resistance to commonly used antibiotics. Generation of new fusidane-type derivatives is therefore of great value, but this is hindered by available approaches. Here, we developed a stochastic combinational strategy by random assembly of all the post-tailoring genes derived from helvolic acid, fusidic acid, and cephalosporin P1 biosynthetic pathways in a strain that produces their common intermediate. Among a total of 27 gene combinations, 24 combinations produce expected products and afford 58 fusidane-type analogues, of which 54 are new compounds. Moreover, random gene combination can induce unexpected activity of some post-tailoring enzymes, leading to a further increase in chemical diversity. These newly generated derivatives provide new insights into the structure‒activity relationship of fusidane-type antibiotics. The stochastic combinational strategy established in this study proves to be a powerful approach for expanding structural diversity of natural products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...